Published in

Nature Research, npj Quantum Materials, 1(9), 2024

DOI: 10.1038/s41535-024-00623-9

Links

Tools

Export citation

Search in Google Scholar

Nanoscale visualization and spectral fingerprints of the charge order in ScV6Sn6 distinct from other kagome metals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCharge density waves (CDWs) in kagome metals have been tied to many exotic phenomena. Here, using spectroscopic-imaging scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we study the charge order in kagome metal ScV6Sn6. The similarity of electronic band structures of ScV6Sn6 and TbV6Sn6 (where charge ordering is absent) suggests that charge ordering in ScV6Sn6 is unlikely to be primarily driven by Fermi surface nesting of the Van Hove singularities. In contrast to the CDW state of cousin kagome metals, we find no evidence supporting rotation symmetry breaking. Differential conductance dI/dV spectra show a partial gap Δ1CO ≈ 20 meV at the Fermi level. Interestingly, dI/dV maps reveal that charge modulations exhibit an abrupt phase shift as a function of energy at energy much higher than Δ1CO, which we attribute to another spectral gap. Our experiments reveal a distinctive nature of the charge order in ScV6Sn6 with fundamental differences compared to other kagome metals.