Published in

American Phytopathological Society, Phytopathology, 11(113), p. 2083-2090, 2023

DOI: 10.1094/phyto-09-22-0352-sa

Links

Tools

Export citation

Search in Google Scholar

Comparative Genomics of Xanthomonas translucens pv. undulosa Strains Isolated from Weedy Grasses and Cultivated Wild Rice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bacterial leaf streak (BLS) of wheat ( Triticum aestivum), caused by Xanthomonas translucens pv. undulosa, is a disease of major concern in the Northern Great Plains. The host range for X. translucens pv. undulosa is relatively broad, including several small grains and perennial grasses. In Minnesota, X. translucens pv. undulosa was isolated from weedy grasses in and around wheat fields that exhibited BLS symptoms and from cultivated wild rice ( Zizania palustris) with symptomatic leaf tissue. Currently, no genomic resources are available for X. translucens pv. undulosa strains isolated from non-wheat hosts. In this study, we sequenced and assembled the complete genomes of five strains isolated from weedy grass hosts, foxtail barley ( Hordeum jubatum), green foxtail ( Setaria viridis), and wild oat ( Avena fatua), and from cultivated wild rice and wheat. These five genomes were compared with the publicly available genomes of seven X. translucens pv. undulosa strains originating from wheat and one genome of an X. translucens pv. secalis strain originating from rye ( Secale cereale). Global alignments of the genomes revealed little variation in genomic structures. Average nucleotide identity-based phylogeny and life identification numbers revealed that the strains share ≥99.25% identity. We noted differences in the presence of Type III secreted effectors, including transcription activator-like effectors. Despite differences between strains, we did not identify unique features distinguishing strains isolated from wheat and non-wheat hosts. This study contributes to the availability of genomic data for X. translucens pv. undulosa from non-wheat hosts, thus increasing our understanding of the diversity within the pathogen population.