Published in

American Astronomical Society, Astrophysical Journal Supplement, 2(270), p. 26, 2024

DOI: 10.3847/1538-4365/ad118a

Links

Tools

Export citation

Search in Google Scholar

Changing-look Active Galactic Nuclei from the Dark Energy Spectroscopic Instrument. I. Sample from the Early Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Changing-look active galactic nuclei (CL AGNs) can be generally confirmed by the emergence (turn-on) or disappearance (turn-off) of broad emission lines (BELs), associated with a transient timescale (about 100 ∼ 5000 days) that is much shorter than predicted by traditional accretion disk models. We carry out a systematic CL AGN search by crossmatching the spectra coming from the Dark Energy Spectroscopic Instrument and the Sloan Digital Sky Survey. Following previous studies, we identify CL AGNs based on Hα, Hβ, and Mg ii at z ≤ 0.75 and Mg ii, C iii], and C iv at z > 0.75. We present 56 CL AGNs based on visual inspection and three selection criteria, including 2 Hα, 34 Hβ, 9 Mg ii, 18 C iii], and 1 C iv CL AGN. Eight cases show simultaneous appearances/disappearances of two BELs. We also present 44 CL AGN candidates with significant flux variation of BELs, but remaining strong broad components. In the confirmed CL AGNs, 10 cases show additional CL candidate features for different lines. In this paper, we find: (1) a 24:32 ratio of turn-on to turn-off CL AGNs; (2) an upper-limit transition timescale ranging from 330 to 5762 days in the rest frame; and (3) the majority of CL AGNs follow the bluer-when-brighter trend. Our results greatly increase the current CL census (∼30%) and would be conducive to exploring the underlying physical mechanism.