Published in

American Association for the Advancement of Science, Science Translational Medicine, 745(16), 2024

DOI: 10.1126/scitranslmed.ade4510

Links

Tools

Export citation

Search in Google Scholar

Electronic health record signatures identify undiagnosed patients with Common Variable Immunodeficiency Disease

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human inborn errors of immunity include rare disorders entailing functional and quantitative antibody deficiencies due to impaired B cells called the common variable immunodeficiency (CVID) phenotype. Patients with CVID face delayed diagnoses and treatments for 5 to 15 years after symptom onset because the disorders are rare (prevalence of ~1/25,000), and there is extensive heterogeneity in CVID phenotypes, ranging from infections to autoimmunity to inflammatory conditions, overlapping with other more common disorders. The prolonged diagnostic odyssey drives excessive system-wide costs before diagnosis. Because there is no single causal mechanism, there are no genetic tests to definitively diagnose CVID. Here, we present PheNet, a machine learning algorithm that identifies patients with CVID from their electronic health records (EHRs). PheNet learns phenotypic patterns from verified CVID cases and uses this knowledge to rank patients by likelihood of having CVID. PheNet could have diagnosed more than half of our patients with CVID 1 or more years earlier than they had been diagnosed. When applied to a large EHR dataset, followed by blinded chart review of the top 100 patients ranked by PheNet, we found that 74% were highly probable to have CVID. We externally validated PheNet using >6 million records from disparate medical systems in California and Tennessee. As artificial intelligence and machine learning make their way into health care, we show that algorithms such as PheNet can offer clinical benefits by expediting the diagnosis of rare diseases.