Published in

Optica, Optics Letters, 13(48), p. 3579, 2023

DOI: 10.1364/ol.488657

Links

Tools

Export citation

Search in Google Scholar

Thickness-ratio-dependent performances of broadband organic photodiodes based on a tin phthalocyanine/PTCDA heterojunction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Employing a photosensitive donor/acceptor planar heterojunction (DA-PHJ) with complementary optical absorption as the active layer is one of the key strategies for realizing broad spectral organic photodiodes (BS-OPDs). To achieve superior optoelectronic performance, it is vital to optimize the thickness ratio of the donor layer to acceptor layer (the DA thickness ratio) in addition to the optoelectronic properties of the DA-PHJ materials. In this study, we realized a BS-OPD exploiting tin(II) phthalocyanine (SnPc)/3,4,9,10-perylenete-acarboxylic dianhydride (PTCDA) as the active layer and investigated the effect of the DA thickness ratio on the device performance. The results showed that the DA thickness ratio has a significant impact on the device performance, and an optimized DA thickness ratio of 30:20 was found. Upon the optimization of the DA thickness ratio, improvements of 187% in photoresponsivity and 144% in specific detectivity were achieved on average. Trap-free space-charge-limited photocarrier transport and balanced optical absorption over the wavelength range can be ascribed to the improved performance at the optimized DA thickness ratio. These results establish a solid photophysical foundation for improving the performance of BS-OPDs via thickness ratio optimization.