Published in

MDPI, Polymers, 21(15), p. 4336, 2023

DOI: 10.3390/polym15214336

Links

Tools

Export citation

Search in Google Scholar

Ophthalmic Bimatoprost-Loaded Niosomal In Situ Gel: Preparation, Optimization, and In Vivo Pharmacodynamics Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) and size. The optimized BMT-loaded niosomal formulation prepared at a cholesterol/span 60 ratio of 1:2 exhibited the highest entrapment (81.2 ± 1.2%) and a small particle size (167.3 ± 9.1 nm), and they were selected for incorporation into in situ gelling systems (BMT-ISGs) based on Pluronic F127/Pluronic F68. Finally, the in vivo efficiency of the BMT-ISG formulation, in terms of lowering the intraocular pressure (IOP) in normotensive male albino rabbits following ocular administration, was assessed and compared to that of BMT ophthalmic solution. All the formulated BMT-ISGs showed sol–gel transition temperatures ranging from 28.1 °C to 40.5 ± 1.6 °C. In addition, the BMT-ISG formulation sustained in vitro BMT release for up to 24 h. Interestingly, in vivo experiments depicted that topical ocular administration of optimized BMT-ISG formulation elicited a significant decline in IOP, with maximum mean decreases in IOP of 9.7 ± 0.6 mm Hg, compared to BMT aqueous solution (5.8 ± 0.6 mm Hg). Most importantly, no signs of irritation to the rabbit’s eye were observed following topical ocular administration of the optimized BMT-ISG formulation. Collectively, our results suggested that niosomal in situ gels might be a feasible delivery vehicle for topical ocular administration of anti-glaucoma agents, particularly those with poor ocular bioavailability.