Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 12(124), 2024

DOI: 10.1063/5.0189619

Links

Tools

Export citation

Search in Google Scholar

Nanoscaled magnon transistor based on stimulated three-magnon splitting

Journal article published in 2024 by Xu Ge ORCID, Roman Verba ORCID, Philipp Pirro ORCID, Andrii V. Chumak ORCID, Qi Wang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Magnonics is a rapidly growing field, attracting much attention for its potential applications in data transport and processing. Many individual magnonic devices have been proposed and realized in laboratories. However, an integrated magnonic circuit with several separate magnonic elements has yet not been reported due to the lack of a magnonic amplifier to compensate for transport and processing losses. The magnon transistor reported in Chumak et al. [Nat. Commun. 5, 4700 (2014)] could only achieve a gain of 1.8, which is insufficient in many practical cases. Here, we use the stimulated three-magnon splitting phenomenon to numerically propose a concept of magnon transistor in which the energy of the gate magnons at 14.6 GHz is directly pumped into the energy of the source magnons at 4.2 GHz, thus achieving the gain of 9. The structure is based on the 100 nm wide YIG nano-waveguides, a directional coupler is used to mix the source and gate magnons, and a dual-band magnonic crystal is used to filter out the gate and idler magnons at 10.4 GHz frequency. The magnon transistor preserves the phase of the signal, and the design allows integration into a magnon circuit.