Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 32(9), 2023

DOI: 10.1126/sciadv.adg4609

Links

Tools

Export citation

Search in Google Scholar

Deeply nonlinear excitation of self-normalized short spin waves

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Spin waves are ideal candidates for wave-based computing, but the construction of magnetic circuits is blocked by a lack of an efficient mechanism to excite long-running exchange spin waves with normalized amplitudes. Here, we solve the challenge by exploiting a deeply nonlinear phenomenon for forward volume spin waves in 200-nm-wide nanoscale waveguides and validate our concept using microfocused Brillouin light scattering spectroscopy. An unprecedented nonlinear frequency shift of more than 2 GHz is achieved, corresponding to a magnetization precession angle of 55° and enabling the excitation of spin waves with wavelengths down to 200 nm. The amplitude of the excited spin waves is constant and independent of the input microwave power due to the self-locking nonlinear shift, enabling robust adjustment of the spin-wave amplitudes in future on-chip magnonic integrated circuits.