Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Micromachines, 9(14), p. 1658, 2023

DOI: 10.3390/mi14091658

Links

Tools

Export citation

Search in Google Scholar

Continuous On-Chip Cell Washing Using Viscoelastic Microfluidics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Medium exchange of particles/cells to a clean buffer with a low background is essential for biological, chemical, and clinical research, which has been conventionally conducted using centrifugation. However, owing to critical limitations, such as possible cell loss and physical stimulation of cells, microfluidic techniques have been adopted for medium exchange. This study demonstrates a continuous on-chip washing process in a co-flow system using viscoelastic and Newtonian fluids. The co-flow system was constructed by adding a small amount of biocompatible polymer (xanthan gum, XG) to a sample containing particles or cells and introducing Newtonian fluids as sheath flows. Polymer concentration-dependent and particle size-dependent lateral migration of particles in the co-flow system were examined, and then the optimal concentration and the critical particle size for medium exchange were determined at the fixed total flow rate of 100 μL/min. For clinical applications, the continuous on-chip washing of white blood cells (WBCs) in lysed blood samples was demonstrated, and the washing performance was evaluated using a scanning spectrophotometer.