Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics: Condensed Matter, 8(36), p. 085701, 2023

DOI: 10.1088/1361-648x/ad0a10

Links

Tools

Export citation

Search in Google Scholar

Evolution of point defects in pulsed-laser-melted Ge<sub>1-x </sub>Sn <sub>x</sub> probed by positron annihilation lifetime spectroscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Direct-band-gap Germanium-Tin alloys (Ge1-x Sn x ) with high carrier mobilities are promising materials for nano- and optoelectronics. The concentration of open volume defects in the alloy, such as Sn and Ge vacancies, influences the final device performance. In this article, we present an evaluation of the point defects in molecular-beam-epitaxy grown Ge1-x Sn x films treated by post-growth nanosecond-range pulsed laser melting (PLM). Doppler broadening – variable energy positron annihilation spectroscopy and variable energy positron annihilation lifetime spectroscopy are used to investigate the defect nanostructure in the Ge1-x Sn x films exposed to increasing laser energy density. The experimental results, supported with ATomic SUPerposition calculations, evidence that after PLM, the average size of the open volume defects increases, which represents a raise in concentration of vacancy agglomerations, but the overall defect density is reduced as a function of the PLM fluence. At the same time, the positron annihilation spectroscopy analysis provides information about dislocations and Ge vacancies decorated by Sn atoms. Moreover, it is shown that the PLM reduces the strain in the layer, while dislocations are responsible for trapping of Sn and formation of small Sn-rich-clusters.