Published in

American Institute of Physics, Journal of Applied Physics, 18(133), 2023

DOI: 10.1063/5.0144308

Links

Tools

Export citation

Search in Google Scholar

In situ measurements of non-equilibrium positron state defects during He irradiation in Si

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Radiation-induced property changes in materials originate from the energy transfer from an incoming particle to the existing lattice, displacing atoms. The displaced atoms can cause the formation of extended defects including dislocation loops, voids, or precipitates. The non-equilibrium defects created during damage events determine the extent of these larger defects and are a function of dose rate, material, and temperature. However, these defects are transient and can only be probed indirectly. This work presents direct experimental measurements and evidence of irradiated non-equilibrium vacancy formation, where in situ positron annihilation spectroscopy was used to prove the generation of non-equilibrium defects in silicon.