BioScientifica, European Journal of Endocrinology, 6(188), p. 526-535, 2023
Full text: Unavailable
Abstract Objective Achieving recommended targets of sodium correction is challenging to physicians treating hyponatraemia. Plasma sodium has to be increased effectively, yet overcorrection must be prevented. This is often hampered by a high variability of responses to treatment. Here, we sought to delineate factors influencing sodium evolution. Design We retrospectively analysed 3460 patients from the multinational Hyponatraemia Registry comprising a wide range of hyponatraemia aetiologies and treatment strategies. Methods Multivariable linear mixed effects models were applied to identify predictors of plasma sodium evolution within the first 24 h of treatment. Results Evolution of sodium levels over time showed a curvilinear pattern with steeper rise at earlier time points. Baseline sodium showed the most pronounced impact with an additional increment of 3.12 mEq/L for every 10 mEq/L initial sodium reduction. With sodium increments of 1.9 mEq/L and 1.4 mEq/L per 24 h, respectively, the entities hypovolaemic and thiazide-associated hyponatraemia were independent factors for sodium evolution. Therapeutic regimens using hypertonic saline (4.6 mEq/L/24 h), tolvaptan (3.4 mEq/L/24 h), or combination therapy (2.6 mEq/L/24 h) were also associated with a significantly larger sodium rise when compared with no active treatment. Conclusions Choice and dosing of active hyponatraemia therapy should be adjusted not only according to aetiology but most importantly to pretreatment sodium. Although counterintuitive, less aggressive therapy in more profound hyponatraemia might be safer but yet effective at least in less severe cases.