Published in

Optica, Optical Materials Express, 1(14), p. 92, 2023

DOI: 10.1364/ome.507644

Links

Tools

Export citation

Search in Google Scholar

Analog image processing with nonlinear nonlocal flat optics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Digital signal processing has revolutionized many fields of science and engineering, but it still shows critical limits, mainly related to the complexity, power consumption, and limited speed of analogue-to-digital converters. A long-sought solution to overcome these hurdles is optical analog computing. In this regard, flat optics has been recently unveiled as a powerful platform to perform data processing in real-time, with low power consumption and a small footprint. So far, these explorations have been mainly limited to linear optics. Arguably, significantly more impact may be garnered from pushing this operation towards nonlinear processing of the incoming signals. In this context, we demonstrate here that nonlinear phenomena combined with engineered nonlocality in flat optics devices can be leveraged to synthesize Volterra kernels able to outperform linear optical analog image processing.