Published in

American Institute of Physics, APL Materials, 6(11), 2023

DOI: 10.1063/5.0153164

Links

Tools

Export citation

Search in Google Scholar

Engineering structural homogeneity and magnetotransport in strained Nd2Ir2O7 films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The 5d pyrochlore iridate family (R2Ir2O7, where R is a rare earth ion) has garnered significant attention due to its topological properties, such as Weyl semimetallic phases and axion insulator. However, the investigation of these properties has been impeded by severe iridium loss during growth, which results in the formation of defects and impurities. Herein, we demonstrate a method for controlling impurities and defects in strained Nd2Ir2O7 (NIO-227) films by compensating for iridium loss during growth. By increasing the amount of IrO2 target ablated, we enhance the morphological quality and electrical transport properties of the fabricated films. Furthermore, our results show that the anomalous Hall effects of the films have a strong dependency on the amount of IrO2 target ablated, which is attributed to the structural inhomogeneity in the NIO-227 films. Our work provides a way to control defects and impurities and would promote the investigation of topological phases in the family R2Ir2O7.