Published in

MDPI, Applied Sciences, 1(14), p. 235, 2023

DOI: 10.3390/app14010235

Links

Tools

Export citation

Search in Google Scholar

A Novel Line-Scan Algorithm for Unsynchronised Dynamic Measurements

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In non-destructive inspections today, the size of the sample being examined is often limited to fit within the field of view of the camera being used. When examining larger specimens, multiple image sequences need to be stitched together into one image. Due to uneven illumination, the combined image may have artificial defects. This manuscript provides a solution for performing line-scan measurements from a sample and combining the images to avoid these artificial defects. The proposed algorithm calculates the pixel shift, either through checkerboard detection or by field of view (FOV) calculation, for each image to create the stitched image. This working principle eliminates the need for synchronisation between the motion speed of the object and the frame rate of the camera. The algorithm is tested with several cameras that operate in different wavelengths (ultraviolet (UV), visible near infrared (Vis-NIR) and long-wave infrared (LWIR)), each with the corresponding light sources. Results show that the algorithm is able to achieve subpixel stitching accuracy. The side effects of heterogeneous illumination can be solved using the proposed method.