Published in

MDPI, Electronics, 9(13), p. 1748, 2024

DOI: 10.3390/electronics13091748

Links

Tools

Export citation

Search in Google Scholar

Enhancing Moisture-Induced Defect Detection in Insulated Steel Pipes through Infrared Thermography and Hybrid Dataset

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is crucial to accurately detect moisture-induced defects in steel pipe insulation in order to combat corrosion under insulation (CUI). This study enhances the capabilities of infrared thermography (IRT) by integrating it with top-performing machine learning models renowned for their effectiveness in image segmentation tasks. A novel methodology was developed to enrich machine learning training, incorporating synthetic datasets generated via finite element method (FEM) simulations with experimental data. The performance of four advanced models—UNet, UNet++, DeepLabV3+, and FPN—was evaluated. These models demonstrated significant enhancements in defect detection capabilities, with notable improvements observed in FPN, which exhibited a mean intersection over union (IoU) increase from 0.78 to 0.94, a reduction in loss from 0.19 to 0.06, and an F1 score increase from 0.92 to 0.96 when trained on hybrid datasets compared to those trained solely on real data. The results highlight the benefits of integrating synthetic and experimental data, effectively overcoming the challenges of limited dataset sizes, and significantly improving the models’ accuracy and generalization capabilities in identifying defects. This approach marks a significant advancement in industrial maintenance and inspection, offering a precise, reliable, and scalable solution to managing the risks associated with CUI.