Published in

IOP Publishing, Journal of Physics: Condensed Matter, 48(35), p. 485801, 2023

DOI: 10.1088/1361-648x/acf35b

Links

Tools

Export citation

Search in Google Scholar

Ferromagnetic resonators synthesized by metal-organic decomposition epitaxy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Metal-organic decomposition epitaxy is an economical wet-chemical approach suitable to synthesize high-quality low-spin-damping films for resonator and oscillator applications. This work reports the temperature dependence of ferromagnetic resonances and associated structural and magnetic quantities of yttrium iron garnet nanofilms that coincide with single-crystal values. Despite imperfections originating from wet-chemical deposition and spin coating, the quality factor for out-of-plane and in-plane resonances approaches 600 and 1000, respectively, at room temperature and 40 GHz. These values increase with temperature and are 100 times larger than those offered by commercial devices based on complementary metal-oxide semiconductor voltage-controlled oscillators at comparable production costs.