Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Nucleic Acids Research, 2024

DOI: 10.1093/nar/gkae303

Links

Tools

Export citation

Search in Google Scholar

ProTox 3.0: a webserver for the prediction of toxicity of chemicals

Journal article published in 2024 by Priyanka Banerjee ORCID, Emanuel Kemmler, Mathias Dunkel, Robert Preissner ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Interaction with chemicals, present in drugs, food, environments, and consumer goods, is an integral part of our everyday life. However, depending on the amount and duration, such interactions can also result in adverse effects. With the increase in computational methods, the in silico methods can offer significant benefits to both regulatory needs and requirements for risk assessments and the pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox 3.0, which incorporates molecular similarity and machine-learning models for the prediction of 61 toxicity endpoints such as acute toxicity, organ toxicity, clinical toxicity, molecular-initiating events (MOE), adverse outcomes (Tox21) pathways, several other toxicological endpoints and toxicity off-targets. All the ProTox 3.0 models are validated on independent external sets and have shown strong performance. ProTox envisages itself as a complete, freely available computational platform for in silico toxicity prediction for toxicologists, regulatory agencies, computational chemists, and medicinal chemists. The ProTox 3.0 webserver is free and open to all users, and there is no login requirement and can be accessed via https://tox.charite.de. The web server takes a 2D chemical structure as input and reports the toxicological profile of the compound for each endpoint with a confidence score and overall toxicity radar plot and network plot.