Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Quarterly Journal of the Royal Meteorological Society, 759(150), p. 776-795, 2024

DOI: 10.1002/qj.4622

Links

Tools

Export citation

Search in Google Scholar

Domino: A new framework for the automated identification of weather event precursors, demonstrated for European extreme rainfall

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA number of studies have investigated the large‐scale drivers and upstream precursors of extreme weather events, making it clear that the earliest warning signs of extreme events can be remote from the impacted region in both time and space. Integrating and leveraging our understanding of dynamical precursors provides a new perspective on ensemble forecasting for extreme events, focused on building storylines of possible event evolution. This then acts as a tool for raising awareness of the conditions conducive to high‐impact weather and providing early warning of their possible development. However, operational applications of this developing knowledge base are limited, perhaps for want of a clear framework for doing so. Here, we present such a framework, supported by open software tools, designed for identifying large‐scale precursors of categorical weather events in an automated fashion and reducing them to scalar indices suitable for statistical prediction, forecast interpretation, and model validation. We demonstrate this framework by systematically analysing the precursor circulations of daily rainfall extremes across 18 regional‐ to national‐scale European domains. We discuss the precursor rainfall dynamics for three disparate regions, and show our findings are consistent with, and extend, previous work. We provide an estimate of the predictive utility of these precursors across Europe based on logistic regression, and show that large‐scale precursors can usefully predict heavy rainfall between two and six days ahead, depending on region and season. We further show how, for more continental‐scale applications, the regionally specific precursors can be synthesised into a minimal set of indices that drive heavy precipitation. We then provide comments and guidance for generalisation and application of our demonstrated approach to new variables, timescales, and regions.