Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Social Cognitive and Affective Neuroscience, 1(18), 2023

DOI: 10.1093/scan/nsad034

Links

Tools

Export citation

Search in Google Scholar

Age-related differences in interference control in the context of a finger-lifting task: an fMRI study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Humans tend to automatically imitate others and their actions while also being able to control such imitative tendencies. Interference control, necessary to suppress own imitative tendencies, develops rapidly in childhood and adolescence, plateaus in adulthood and slowly declines with advancing age. It remains to be shown though which neural processes underpin these differences across the lifespan. In a cross-sectional functional magnetic resonance imaging study with three age groups (adolescents (ADs) 14–17 years, young adults (YAs) 21–31, older adults (OAs) 56–76, N = 91 healthy female participants), we investigated the behavioral and neural correlates of interference control in the context of automatic imitation using the finger-lifting task. ADs showed the most efficient interference control, while no significant differences emerged between YAs and OAs, despite OAs showing longer reaction times. On the neural level, all age groups showed engagement of the right temporoparietal junction, right supramarginal gyrus and bilateral insula, aligning well with studies previously using this task. However, our analyses did not reveal any age-related differences in brain activation, neither in these nor in other areas. This suggests that ADs might have a more efficient use of the engaged brain networks and, on the other hand, OAs’ capacity for interference control and the associated brain functions might be largely preserved.