Published in

MDPI, Molecules, 1(29), p. 17, 2023

DOI: 10.3390/molecules29010017

Links

Tools

Export citation

Search in Google Scholar

Synthesis and Characterization of Ruthenium-Paraphenylene-Cyclopentadienyl Full-Sandwich Complexes: Cytotoxic Activity against A549 Lung Cancer Cell Line and DNA Binding Properties

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Novel full-sandwich (η5-Cp)-Ru-paraphenylene complexes with the general formula [(η5-Cp)nRu(η6-L)](PF6)n where n = 1–3 and L = biphenyl, p-terphenyl and p-quaterphenyl, were synthesized and characterized by means of spectroscopic and analytical techniques. The structures of the complexes [(η5-Cp)Ru(η6-biphenyl)](PF6) (1), [(η5-Cp)Ru(η6-terphenyl)](PF6) (3) and [(η5-Cp)2Ru(η6-terphenyl)](PF6)2 (4) was determined by X-ray single crystal methods. The interaction of the complexes [(η5-Cp)Ru(η6-quaterphenyl)]Cl, (6)Cl, and [(η5-Cp)2Ru(η6-quaterphenyl)]Cl2, (7)Cl2, with the DNA duplex d(5′-CGCGAATTCGCG-3′)2 was studied using NMR techniques. The results showed that both complexes interacted non-specifically with both the minor and major grooves of the helix. Specifically, (6)Cl exhibited partial binding through intercalation between the T7 and T8 bases of the sequence without disrupting the C–G and A–T hydrogen bonds. Fluorometric determination of the complexes’ binding constants revealed a significant influence of the number of connected phenyl rings in the paraphenylene ligand (L) on the binding affinity of their complexes with the d(5′-CGCGAATTCGCG-3′)2. The complexes (6)Cl and (7)Cl2 were found to be highly cytotoxic against the A549 lung cancer cell line, with complex (6) being more effective than (7) (IC50 for (6)Cl: 17.45 ± 2.1 μΜ, IC50 for (7)Cl2: 65.83 ± 1.8 μΜ) and with a selectivity index (SI) (SI for (6)Cl: 1.1 and SI for (7)Cl2: 4.8).