Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Crystals, 12(13), p. 1693, 2023

DOI: 10.3390/cryst13121693

Links

Tools

Export citation

Search in Google Scholar

X-ray Crystal Structure, Hirshfeld Surface Analysis, DFT, and Anticancer Effect of 3-Hydroxy-4-phenyl-1,5-benzodiazepin-2-one Derivatives

Journal article published in 2023 by Sanae Lahmidi, Ahmad Bakheit ORCID, El Essassi, Joel Mague ORCID, Mohammed Alanazi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study investigated the crystallographic and electronic properties of 1,5-benzodiazepine compounds, namely: cis-(3S,4S)-3-hydroxy-7,8-dimethyl-4-phenyl-1,3,4,5-tetrahydro-1,5-benzodiazepin-2-one 3b, trans-(3R,4R)-1-ethyl-3-hydroxy-7,8-dimethyl-4-phenyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one 4, and trans-(3S,4S) 1-ethyl-3-ethoxy-7,8-dimethyl-4-phenyl-1,3,4,5-tetrahydro-1,5-benzodiazepin-2-one 5. Hirshfeld surface analysis was also applied to discern the intermolecular interactions, highlighting the significance of hydrogen bonding, van der Waals forces, and the influence of specific substituents. Furthermore, the MESP maps created using the density functional theory revealed the electrostatic nature of these molecules. The absence of dark blue regions on the MESP maps and variations due to different functional groups and substitutions were noteworthy findings. Collectively, this research offers crucial insights into the behaviour, interactions, and potential applications of new compounds. Finally, the anticancer effects of compounds 3b, 4, and 5 were evaluated against three cancer cell lines and one normal cell line, and the results showed that 3b and 4 had potent antiproliferative effects against all three cancer cell lines.