Published in

American Geophysical Union, Geophysical Research Letters, 14(50), 2023

DOI: 10.1029/2022gl102466

Links

Tools

Export citation

Search in Google Scholar

How Credibly Do CMIP6 Simulations Capture Historical Mean and Extreme Precipitation Changes?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractFuture precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases.