Published in

American Astronomical Society, Astrophysical Journal Letters, 2(967), p. L23, 2024

DOI: 10.3847/2041-8213/ad464c

Links

Tools

Export citation

Search in Google Scholar

Two Distinct Classes of Quiescent Galaxies at Cosmic Noon Revealed by JWST PRIMER and UNCOVER

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present a measurement of the low-mass quiescent size–mass relation at cosmic noon (1 < z < 3) from the JWST PRIMER and UNCOVER treasury surveys, which highlights two distinct classes of quiescent galaxies. While the massive population is well studied at these redshifts, the low-mass end has been previously underexplored due to a lack of observing facilities with sufficient sensitivity and spatial resolution. We select a conservative sample of low-mass quiescent galaxy candidates using rest-frame UVJ colors and specific star formation rate criteria and measure galaxy morphology in both rest-frame UV/optical wavelengths (F150W) and rest-frame near-infrared (F444W). We confirm an unambiguous flattening of the low-mass quiescent size–mass relation, which results from the separation of the quiescent galaxy sample into two distinct populations at log ( M ⋆ / M ⊙ ) ∼ 10.3 : low-mass quiescent galaxies that are notably younger and have disky structures, and massive galaxies consistent with spheroidal morphologies and older median stellar ages. These separate populations imply mass quenching dominates at the massive end while other mechanisms, such as environmental or feedback-driven quenching, form the low-mass end. This stellar mass-dependent slope of the quiescent size–mass relation could also indicate a shift from size growth due to star formation (low masses) to growth via mergers (massive galaxies). The transition mass between these two populations also corresponds with other dramatic changes and characteristic masses in several galaxy evolution scaling relations (e.g., star formation efficiency, dust obscuration, and stellar-to-halo mass ratios), further highlighting the stark dichotomy between low-mass and massive galaxy formation.