Published in

MDPI, Photonics, 5(11), p. 392, 2024

DOI: 10.3390/photonics11050392

Links

Tools

Export citation

Search in Google Scholar

High-Efficiency and Large-Angle Homo-Metagratings for the Near-Infrared Region

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Compact photonic devices that integrate metasurfaces with light sources have been widely studied. However, experimental demonstrations of a higher efficiency of integration are still lacking. To enhance the efficiency of light sources integrated with metasurfaces, we employed a forward design optimization method and index matching between the light source and metasurface substrate to design metagratings. To optimize the overall diffraction efficiency, we manipulated the degrees of freedom in phase, the lattice constants, and the number of unit cells. The same material was utilized for the nanostructures and substrate (homo-metagrating) for index matching, while Si and GaAs materials were used for working at 1550 and 940 nm, respectively. The experimental homo-metagratings operating at 1550 nm and made of Si exhibited an overall average efficiency of 51.3% at diffraction angles of 60.3°. On the other hand, experimental homo-metagratings operating at 940 nm and made of GaAs exhibited an overall average efficiency of 52.4% at diffraction angles of 49.3°. This suggests that the future integration of metagratings with a polarization-specific laser can further enhance the overall diffraction efficiency.