Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, 4(25), 2024

DOI: 10.1029/2023gc011302

Links

Tools

Export citation

Search in Google Scholar

Impact of Seawater Inorganic Carbon Chemistry on Element Incorporation in Foraminiferal Shell Carbonate

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractReconstruction of the marine inorganic carbon system relies on proxy signal carriers, such as element/calcium (El/Ca) ratios in foraminiferal shells. Concentrations of boron, lithium, strontium, and sulfur have been shown to vary with carbonate system parameters, but when comparing individual proxy reconstructions based on these elements, they are rarely in complete agreement. This is likely caused by the simultaneous effects of multiple environmental factors on element incorporation. Culture experiments with benthic foraminifera have revealed that the shell's S/Ca reflects the carbon chemistry and can potentially be used as a proxy for seawater []. Aiming to investigate the application potential of sulfur incorporation for carbonate speciation reconstruction, we present S/Ca ratios in five planktonic foraminiferal species, namely Globigerina bulloides, Globigerinoides ruber albus, Globigerinoides ruber ruber, Trilobatus sacculifer, and Neogloboquadrina incompta from core‐top sediments in regions with contrasting [], [], temperature, and salinity. Analyses of B/Ca and Mg/Ca ratios are included here since these elements have been shown to depend to a certain degree on carbon system parameters (e.g., calcite saturation state and pH, respectively) as well. Moreover, foraminiferal Mg/Ca values covary with S/Ca values and thereby might compromise its proxy application. In contrast to previously published results, this new data set shows a positive correlation between the incorporation of sulfur in the foraminifer's shell and seawater []. As the incorporation of sulfur and magnesium are positively correlated, S/Mg values of the same foraminifera may be used to improve inorganic carbon system reconstructions.