Published in

American Institute of Physics, APL Materials, 4(12), 2024

DOI: 10.1063/5.0189694

Links

Tools

Export citation

Search in Google Scholar

Imperfect phononic crystals work too: The effect of translational and mid-plane symmetry breaking on hypersound propagation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Translationally symmetric nanostructures, termed phononic crystals (PnCs), offer control over the propagation of acoustic phonons in the gigahertz (GHz) range for signal-processing applications and thermal management at sub-Kelvin temperatures. In this work, we utilize Brillouin light scattering to investigate the impact of symmetry breaking on GHz phonon propagation in PnCs made of holey silicon nanomembranes. We show that the lattice of thimble-like holes leads to broken mid-plane symmetry and, hence, to anticrossing acoustic band gaps. With the rising level of uncorrelated translational disorder, the phononic effects are gradually suppressed, starting at higher frequencies. Strikingly, the low-frequency partial Bragg bandgap remains robust up to the highest level of disorder.