Published in

American Association for the Advancement of Science, Science, 6651(380), p. 1252-1257, 2023

DOI: 10.1126/science.ade2038

Links

Tools

Export citation

Search in Google Scholar

Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hinge of bivalve shells can sustain hundreds of thousands of repeating opening-and-closing valve motions throughout their lifetime. We studied the hierarchical design of the mineralized tissue in the hinge of the bivalve Cristaria plicata , which endows the tissue with deformability and fatigue resistance and consequently underlies the repeating motion capability. This folding fan–shaped tissue consists of radially aligned, brittle aragonite nanowires embedded in a resilient matrix and can translate external radial loads to circumferential deformation. The hard-soft complex microstructure can suppress stress concentration within the tissue. Coherent nanotwin boundaries along the longitudinal direction of the nanowires increase their resistance to bending fracture. The unusual biomineral, which exploits the inherent properties of each component through multiscale structural design, provides insights into the evolution of antifatigue structural materials.