Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Batteries, 9(9), p. 469, 2023

DOI: 10.3390/batteries9090469

Links

Tools

Export citation

Search in Google Scholar

Covalent Organic Framework-Based Electrolytes for Lithium Solid-State Batteries—Recent Progress

Journal article published in 2023 by Tomasz Polczyk ORCID, Atsushi Nagai ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Covalent organic frameworks (COFs) have emerged as a promising platform of materials for solid-state battery electrolytes due to their porous and robust structures, and their special spaces such as 1D and 3D, as well as their ability to be modified with functional groups. This review focuses on the use of COF materials in solid-state batteries and explores the various types of bonds between building blocks and the impact on key properties such as conductivity, transfer number, and electrochemical stability. The aim is to provide an overview of the current state of COF-based electrolytes for solid-state batteries and to highlight the prospects for future development in this field. The use of COF materials in solid-state batteries has the potential to overcome limitations such as low theoretical energy density, limited temperature stability, and the risk of fire and explosion associated with traditional liquid electrolyte batteries. By providing a more in-depth understanding of the potential applications of COF-based electrolytes in solid-state batteries, this review seeks to pave the way for further advancements and innovations in this field.