Published in

Public Library of Science, PLoS ONE, 2(19), p. e0297992, 2024

DOI: 10.1371/journal.pone.0297992

Links

Tools

Export citation

Search in Google Scholar

MALDI-TOF imaging analysis of benzalkonium chloride penetration in ex vivo human skin

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Benzalkonium chloride (BZK), alkyldimethylbenzlamonium chloride, is a cationic surfactant that is used as an antiseptic. BZK is classified as a quaternary ammonium compound composed of molecules of several alkyl chains of differing lengths, that dictate its effectiveness towards different microbes. As a result, BZK has become one of the most used preservatives in antibacterial solutions. Despite its widespread use, it is not clear whether BZK penetrates human skin. To answer this question, BZK treated skin was analyzed using matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry imaging. Solutions containing BZK and differing excipients, including citric acid, caprylyl glycol, and vitamin E, were applied ex vivo to excised human skin using Franz diffusion cells. Treated skin was embedded in gelatin and sectioned prior to MALDI-TOF imaging. BZK penetrates through the epidermis and into the dermis, and the penetration depth was significantly altered by pH and additives in tested solutions.