Dissemin is shutting down on January 1st, 2025

Published in

Wiley, New Phytologist, 4(242), p. 1645-1660, 2023

DOI: 10.1111/nph.19449

Links

Tools

Export citation

Search in Google Scholar

Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.