Published in

Optica, Optics Continuum, 10(2), p. 2215, 2023

DOI: 10.1364/optcon.502533

Links

Tools

Export citation

Search in Google Scholar

Investigation of modified uni-traveling carrier photodiode for cryogenic microwave photonic links

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantum devices present the potential for unparalleled computing and communications capabilities; however, the cryogenic temperatures required to successfully control and read out many qubit platforms can prove to be very challenging to scale. Recently, there has emerged an interest in using microwave photonics to deliver control signals down to ultracold stages via optical fiber, thereby reducing thermal load and facilitating dense wavelength multiplexing. Photodetectors can then convert this optical energy to electrical signals for qubit control. The fidelity of the quantum operations of interest therefore depend heavily upon the characteristics of the photodiode, yet experimental demonstrations of fiber-coupled photodetection systems at low temperatures are relatively few in number, leaving important open questions regarding how specific detectors may perform in real-world cryogenic settings. In this work, we examine a highly linear modified uni-traveling carrier photodiode (MUTC-PD) under C-band illumination (1530–1565 nm) at three temperature regimes (300 K, 80 K, and ∼4 K) and multiple bias conditions. Our findings of reduced responsivity but preserved bandwidth are consistent with previous studies, while our saturation tests suggest a variety of potential applications for MUTC-PDs in cryogenic microwave photonics with and without electrical bias. Overall, our results should provide a valuable foundation for the continued and expanding use of this detector technology in quantum information processing.