Published in

BMJ Publishing Group, Journal of NeuroInterventional Surgery, p. jnis-2024-021477, 2024

DOI: 10.1136/jnis-2024-021477

Links

Tools

Export citation

Search in Google Scholar

Can micro-guidewire advancement forces predict clot consistency and location to assist the first-line technique for mechanical thrombectomy?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundThe identification of specific clot characteristics before mechanical thrombectomy (MTB) might allow the selection of the most effective first-line technique, thus potentially improving the procedural outcome. We aimed to evaluate if the microwire push forces could extrapolate information on clot consistency and extension before MTB, based on clot mechanical properties.MethodsWe measured in vitro the forces exerted on the proximal extremity of the guidewire during the advancement and retrieval of the guidewire through clot analogs of different compositions. In addition, we analyzed the forces exerted on the guidewire to extrapolate information about the location of the proximal and distal extremities of the clot analogs.ResultsThe maximum forces recorded during the whole penetration phase were significantly different for hard and soft clots (median values, 55.6 mN vs 15.4 mN, respectively; P<0.0001). The maximum slope of the force curves recorded during the advancement of the guidewire for the first 3 s of penetration also significantly differentiated soft from hard clot analogs (7.6 mN/s vs 23.9 mN/s, respectively; P<0.0001). In addition, the qualitative analysis of the shape of the force curves obtained during the advancement and retrieval of the guidewire showed a good potential for the identification of the proximal and distal edges of the clot analogs.ConclusionOur results demonstrated that it was possible to differentiate between soft and hard clot analogs. Furthermore, force measurements could give important information about the location of the clot extremities. Such an approach might support the selection of the first-line MTB technique, with the potential to improve the outcome.