Published in

American Institute of Physics, Applied Physics Letters, 17(124), 2024

DOI: 10.1063/5.0201419

Links

Tools

Export citation

Search in Google Scholar

Fluorite-structured high-entropy oxide sputtered thin films from bixbyite target

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The prototype high-entropy oxide (HEO) Y0.2La0.2Ce0.2Pr0.2Sm0.2O2−δ represents a particularly complex class of HEOs with significant anion sublattice entropy. The system takes either a fluorite or bixbyite-type crystal structure, depending on synthesis kinetics and thermal history. Here, we synthesize bulk ceramics and epitaxial thin films of Y0.2La0.2Ce0.2Pr0.2Sm0.2O2−δ and use diffraction to explore crystal symmetry and phase. Thin films exhibit the high symmetry fluorite phase, while bulk ceramics adopt the lower symmetry bixbyite phase. The difference in chemical ordering and observed symmetry between vapor-deposited and reactively sintered specimens suggests that synthesis kinetics can influence accessible local atomic configurations, i.e., the high kinetic energy adatoms quench in a higher-effective temperature, and thus higher symmetry structure with more configurational entropy. More generally, this demonstration shows that recovered HEO specimens can exhibit appreciably different local configurations depending on synthesis kinetics, with potential ramifications on macroscopic physical properties.