Published in

Optica, Optics Express, 17(31), p. 28596, 2023

DOI: 10.1364/oe.493818

Links

Tools

Export citation

Search in Google Scholar

Physics constraint Deep Learning based radiative transfer model

Journal article published in 2023 by Quanhua Liu ORCID, XingMing Liang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Deep Learning (DL) open sources libraries such as TensorFlow, Keras, and PyTorch have been widely and successfully applied for many applications in a forward model. We have developed the DL radiative transfer model over Oceans under a clear-sky condition. However, the derived physical model from the DL forward model has difficulties in predicting physical properties such as the Jacobian, because multiple solutions can fit the forward model results during the deep learning training process. The Jacobian model in a radiative transfer can calculate radiance sensitivities on geophysical parameters, which are required by satellite radiance assimilation in support of weather forecasts and for retrieving environmental data records. In this study, we introduce a physics constraint into our deep learning training for deriving the forward model that retains right physics. With this physics constraint, the radiance sensitivities are well captured by this new DL radiative transfer.