Published in

The Electrochemical Society, Journal of The Electrochemical Society, 7(170), p. 074502, 2023

DOI: 10.1149/1945-7111/ace289

Links

Tools

Export citation

Search in Google Scholar

Catalyst Aggregate Size Effect on the Mass Transport Properties of Non-Noble Metal Catalyst Layers for PEMFC Cathodes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Non-noble metal catalysts (NNMCs) are regarded as a promising alternative to the costly Pt-based materials required to catalyze the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes. However, the large diversity of NNMC synthesis approaches reported in the literature results in materials featuring a wide variety of particle sizes and morphologies, and the effect of these properties on these catalysts’ PEMFC performance remains poorly understood. To shed light on this matter, in this work we studied the physical and electrochemical properties of NNMC layers prepared from materials featuring broadly different aggregate sizes, whereby this property was tuned by ball milling the precursors used in the NNMCs’ synthesis in the absence vs presence of a solvent. This led to two NNMCs featuring similar Fe-speciations and ORR-activities, but with vastly different aggregate sizes of >5 μm vs ≈100 nm, respectively. Following the extensive characterization of catalyst layers (CLs) prepared with these materials via electron microscopy and X-ray tomography, PEMFC tests at different loadings unveiled that the smaller aggregate size and ≈20% higher porosity of the CL prepared from the wet-milled sample resulted in an improvement of its mass transport properties (as well as a ≈2-fold enhancement of its peak power density under H2/air operation) over the dry-milled material.