Published in

American Geophysical Union, Journal of Geophysical Research: Planets, 5(128), 2023

DOI: 10.1029/2022je007547

Links

Tools

Export citation

Search in Google Scholar

Wind and Turbulence Observations With the Mars Microphone on Perseverance

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractWe utilize SuperCam's Mars microphone to provide information on wind speed and turbulence at high frequencies on Mars. To do so, we first demonstrate the sensitivity of the microphone signal level to wind speed, yielding a power law dependence. We then show the relationship between the microphone signal level and pressure, air and ground temperatures. A calibration function is constructed using Gaussian process regression (a machine learning technique) taking the microphone signal and air temperature as inputs to produce an estimate of the wind speed. This provides a high rate wind speed estimate on Mars, with a sample every 0.01 s. As a result, we determine the fast fluctuations of the wind at Jezero crater which highlights the nature of wind gusts over the Martian day. To analyze the turbulent behavior of this wind speed estimate, we calculate its normalized standard deviation, known as gustiness. To characterize the behavior of this high frequency turbulent intensity at Jezero crater, correlations are shown between the evaluated gustiness statistic and pressure drop rates/sizes, temperature and energy fluxes. This has implications for future atmospheric models on Mars, taking into account turbulence at the finest scales.