Published in

IOP Publishing, 2D Materials, 2(11), p. 025017, 2024

DOI: 10.1088/2053-1583/ad1a6a

Links

Tools

Export citation

Search in Google Scholar

Monolayer WS<sub>2</sub> electro- and photo-luminescence enhancement by TFSI treatment

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Layered material heterostructures (LMHs) can be used to fabricate electroluminescent devices operating in the visible spectral region. A major advantage of LMH-based light emitting diodes (LEDs) is that electroluminescence (EL) emission can be tuned across that of different exciton complexes (e.g. biexcitons, trions, quintons) by controlling the charge density. However, these devices have an EL quantum efficiency as low as ∼10−4%. Here, we show that the superacid bis-(triuoromethane)sulfonimide (TFSI) treatment of monolayer WS2-LEDs boosts EL quantum efficiency by over one order of magnitude at room temperature. Non-treated devices emit light mainly from negatively charged excitons, while the emission in treated ones predominantly involves radiative recombination of neutral excitons. This paves the way to tunable and efficient LMH-based LEDs.