Published in

Wiley, ChemElectroChem, 1(11), 2023

DOI: 10.1002/celc.202300385

Links

Tools

Export citation

Search in Google Scholar

Electrochemical Sensing Based on Nanofibers Modified Electrodes for Application in Diagnostic, Food and Waste Water Samples

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractElectrochemical sensors and biosensors are today important analytical and monitoring tools in various fields, from agriculture and the food industry to environmental and biomedical/pharmaceutical applications. In particular, the integration of nanotechnology with electrochemical sensors and biosensors to develop a new generation of sensor platforms has made enormous progress in recent years. The outstanding properties of one‐dimensional (1D) nanofibers (NFs), such as high porosity, superior mechanical properties and high specific surface area have made them attractive electrocatalysts, support materials for the immobilization of biomolecules as well as mimetic materials for sensing and biosensing applications. Moreover, the possibility of fabricating multifunctional composites based on NFs increases (bio)sensing capabilities through synergistic effects and additive properties. This review describes the progress made over the last decade in the use of multifunctional NFs‐based composites as modified electrodes for the sensing of various analytes in biomedical, food, and wastewater treatment applications. The aim of this review is to provide a comprehensive overview and a guide for researchers from different disciplines to fabricate and improve their selective NFs‐based (bio)sensor platforms for the detection of desired analytes or multi‐analytes.