Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, Journal of Applied Crystallography, 1(57), p. 140-150, 2024

DOI: 10.1107/s1600576723011147

Links

Tools

Export citation

Search in Google Scholar

Unbiased particle conformation extraction from scattering spectra using orthonormal basis expansions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A strategy is outlined for quantitatively evaluating the particle density profiles from small-angle scattering spectra of dilute solutions. The approach employs an orthonormal basis function expansion method, enabling the determination of characteristic mass distributions in self-assembled structures without the need for a specific structural model. Through computational benchmarking, the efficacy of this approach is validated by effectively reconstructing the density profile of soft-ball systems with varying fuzziness from their scattering signatures. The feasibility of the method is demonstrated by fitting small-angle neutron scattering data obtained from Pluronic L64 micelles at different temperatures. This proposed approach is both simple and analytical, eliminating the requirement for a presumptive structural model in scattering analysis. The new method could therefore facilitate quantitative descriptions of complex nanoscopic structures inherent to numerous soft-matter systems using small-angle scattering techniques.