Published in

American Institute of Physics, The Journal of Chemical Physics, 17(158), 2023

DOI: 10.1063/5.0144359

Links

Tools

Export citation

Search in Google Scholar

Scalar Breit interaction for molecular calculations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Variational treatment of the Dirac–Coulomb–Gaunt or Dirac–Coulomb–Breit two-electron interaction at the Dirac–Hartree–Fock level is the starting point of high-accuracy four-component calculations of atomic and molecular systems. In this work, we introduce, for the first time, the scalar Hamiltonians derived from the Dirac–Coulomb–Gaunt and Dirac–Coulomb–Breit operators based on spin separation in the Pauli quaternion basis. While the widely used spin-free Dirac–Coulomb Hamiltonian includes only the direct Coulomb and exchange terms that resemble nonrelativistic two-electron interactions, the scalar Gaunt operator adds a scalar spin–spin term. The spin separation of the gauge operator gives rise to an additional scalar orbit-orbit interaction in the scalar Breit Hamiltonian. Benchmark calculations of Aun (n = 2–8) show that the scalar Dirac–Coulomb–Breit Hamiltonian can capture 99.99% of the total energy with only 10% of the computational cost when real-valued arithmetic is used, compared to the full Dirac–Coulomb–Breit Hamiltonian. The scalar relativistic formulation developed in this work lays the theoretical foundation for the development of high-accuracy, low-cost correlated variational relativistic many-body theory.