Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geophysical Research Letters, 19(50), 2023

DOI: 10.1029/2023gl105687

Links

Tools

Export citation

Search in Google Scholar

Trapped and Leaking Energetic Particles in Injection Flux Tubes of Saturn's Magnetosphere

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractIn Saturn's magnetosphere, the radially‐inward transport of magnetic fluxes is usually carried by localized flux tubes with sharply‐enhanced equatorial magnetic fields. The flux tubes also bring energetic particles inward, which are expected to drift azimuthally and produce energy‐dispersive signatures. Spacecraft observations, however, indicate the occurrence of energy‐dispersionless signatures for perpendicular‐moving particles. These unexpected features are attributed to the sharp magnetic gradient at the edge of the flux tubes, which significantly modifies the drift trajectories of perpendicular‐moving particles to enable their trapping motion within the flux tubes. The bouncing particles are less affected by the gradient, and therefore, still display energy‐dispersive signatures. It is the distinct particle behavior, together with different spacecraft traversal paths, that underlies the observational diversity. The results improve our understanding of particle dynamics in the magnetospheres of giant planets and indicate that pitch‐angle information should be considered in the extraction of flux‐tube properties from energetic particle observations.