Published in

American Society for Microbiology, Microbiology Spectrum, 6(11), 2023

DOI: 10.1128/spectrum.02049-23

Links

Tools

Export citation

Search in Google Scholar

Molecular and evolutionary basis of O-antigenic polysaccharide-driven phage sensitivity in environmental pseudomonads

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Pseudomonas protegens CHA0, a bacterial strain able to suppress plant pathogens as well as efficiently kill lepidopteran pest insects, has been studied as a biocontrol agent to prevent ensuing agricultural damage. However, the success of this method is dependent on efficient plant colonization by the bacterial inoculant, while it faces competition from the resident microbiota as well as predators such as bacteriophages. One of these naturally occurring phages, ΦGP100, was found to drastically reduce the abundance of CHA0 once inoculated into plant microcosms, resulting in the loss of plant protection effect against a phytopathogen. Here, we investigated the molecular determinants implicated in the interaction between CHA0 and the phage ΦGP100 using a high-density transposon-sequencing approach. We show that lipopolysaccharide cell surface decorations, specifically the longer OBC3-type O-antigenic polysaccharide (O-PS, O-antigen) of the two dominant O-PS of CHA0, are essential for the attachment and infection of ΦGP100. Moreover, when exploring the distribution of the OBC3 cluster in bacterial genomes, we identified several parts of this gene cluster that are conserved in phylogenetically distant bacteria. Through heterologous complementation, we integrated an OBC3-type gene copy from a phylogenetically distant bacterium and were able to restore the phage sensitivity of a CHA0 mutant which lacked the ability to form long O-PS. Finally, we evidence that the OBC3 gene cluster of CHA0 displays a high genomic plasticity and likely underwent several horizontal acquisitions and genomic rearrangements. Collectively, this study underlines the complexity of phage-bacteria interactions and the multifunctional aspect of bacterial cell surface decorations. IMPORTANCE The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages). Thus, it is important to gain knowledge regarding the mechanisms behind phage-bacteria interactions to overcome this challenge. Here, we evidence that the major long O-antigenic polysaccharide (O-PS, O-antigen) of the widely used model plant-beneficial bacterium Pseudomonas protegens CHA0 is the receptor of its natural predator, the phage ΦGP100. We examined the distribution of the gene cluster directing the synthesis of this O-PS and identified signatures of horizontal gene acquisitions. Altogether, our study highlights the importance of bacterial cell surface structure variation in the complex interplay between phages and their Pseudomonas hosts.