Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of the Royal Statistical Society: Series C, 5(72), p. 1162-1186, 2023

DOI: 10.1093/jrsssc/qlad076

Links

Tools

Export citation

Search in Google Scholar

Estimating the causal effects of multiple intermittent treatments with application to COVID-19

Journal article published in 2023 by Liangyuan Hu ORCID, Jiayi Ji, Himanshu Joshi ORCID, Fan Li ORCID, Erick R. Scott
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract To draw real-world evidence about the comparative effectiveness of multiple time-varying treatments on patient survival, we develop a joint marginal structural survival model and a novel weighting strategy to account for time-varying confounding and censoring. Our methods formulate complex longitudinal treatments with multiple start/stop switches as the recurrent events with discontinuous intervals of treatment eligibility. We derive the weights in continuous time to handle a complex longitudinal data set without the need to discretise or artificially align the measurement times. We further use machine learning models designed for censored survival data with time-varying covariates and the kernel function estimator of the baseline intensity to efficiently estimate the continuous-time weights. Our simulations demonstrate that the proposed methods provide better bias reduction and nominal coverage probability when analysing observational longitudinal survival data with irregularly spaced time intervals, compared to conventional methods that require aligned measurement time points. We apply the proposed methods to a large-scale COVID-19 data set to estimate the causal effects of several COVID-19 treatments on the composite of in-hospital mortality and intensive care unit (ICU) admission relative to findings from randomised trials.