Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(528), p. 7397-7410, 2024

DOI: 10.1093/mnras/stae473

Links

Tools

Export citation

Search in Google Scholar

The highest mass Kepler red giants – I. Global asteroseismic parameters of 48 stars

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT When low- and intermediate-mass stars evolve off the main sequence, they expand and cool into the red giant stages of evolution, which include those associated with shell H burning (the red giant branch), core He burning (the red clump), and shell He burning (the asymptotic giant branch). The majority of red giants have masses <2 M⊙, and red giants more massive than this are often excluded from major studies. Here, we present a study of the highest mass stars (M > 3.0 M⊙) in the Kepler sample of 16 000 red giants. We begin by re-estimating their global seismic properties with new light curves, highlighting the differences between using the simple aperture photometry and presearch data conditioning of simple aperture photometry light curves provided by Kepler. We use the re-estimated properties to derive new mass estimates for the stars, ending with a final sample of 48 confirmed high-mass stars. We explore their oscillation envelopes, confirming the trends found in recent works such as low mean mode amplitude and wide envelopes. We find, through probabilistic means, that our sample is likely all core He burning stars. We measure their dipole and quadrupole mode visibilities and confirm that the dipole mode visibility tends to decrease with mass.