Published in

IOP Publishing, Journal of Neural Engineering, 1(21), p. 016005, 2024

DOI: 10.1088/1741-2552/ad141e

Links

Tools

Export citation

Search in Google Scholar

Evaluating and benchmarking the EEG signal quality of high-density, dry MXene-based electrode arrays against gelled Ag/AgCl electrodes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objective. To evaluate the signal quality of dry MXene-based electrode arrays (also termed ‘MXtrodes’) for electroencephalographic (EEG) recordings where gelled Ag/AgCl electrodes are a standard. Approach. We placed 4 × 4 MXtrode arrays and gelled Ag/AgCl electrodes on different scalp locations. The scalp was cleaned with alcohol and rewetted with saline before application. We recorded from both electrode types simultaneously while participants performed a vigilance task. Main results. The root mean squared amplitude of MXtrodes was slightly higher than that of Ag/AgCl electrodes (.24–1.94 uV). Most MXtrode pairs had slightly lower broadband spectral coherence (.05 to .1 dB) and Delta- and Theta-band timeseries correlation (.05 to .1 units) compared to the Ag/AgCl pair (p < .001). However, the magnitude of correlation and coherence was high across both electrode types. Beta-band timeseries correlation and spectral coherence were higher between neighboring MXtrodes in the array (.81 to .84 units) than between any other pair (.70 to .75 units). This result suggests the close spacing of the nearest MXtrodes (3 mm) more densely sampled high spatial-frequency topographies. Event-related potentials were more similar between MXtrodes (ρ ⩾ .95) than equally spaced Ag/AgCl electrodes (ρ ⩽ .77, p < .001). Dry MXtrode impedance (x̄ = 5.15 KΩ cm2) was higher and more variable than gelled Ag/AgCl electrodes (x̄ = 1.21 KΩ cm2, p < .001). EEG was also recorded on the scalp across diverse hair types. Significance. Dry MXene-based electrodes record EEG at a quality comparable to conventional gelled Ag/AgCl while requiring minimal scalp preparation and no gel. MXtrodes can record independent signals at a spatial density four times higher than conventional electrodes, including through hair, thus opening novel opportunities for research and clinical applications that could benefit from dry and higher-density configurations.