Published in

American Astronomical Society, Astrophysical Journal Letters, 1(952), p. L7, 2023

DOI: 10.3847/2041-8213/ace18d

Links

Tools

Export citation

Search in Google Scholar

A Large Population of Faint 8 < z < 16 Galaxies Found in the First JWST NIRCam Observations of the NGDEEP Survey

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present an early analysis on the search for high-redshift galaxies using the deepest public JWST imaging to date, the NGDEEP field. These data consist of six-band NIRCam imaging on the Hubble Ultra Deep Field Parallel 2 (HUDF-Par2), covering a total area of 6.3 arcmin2. Based on our initial reduction of the first half of this survey, we reach 5σ depths up to mag = 29.5–29.9 between 1 and 5 μm. Such depths present an unprecedented opportunity to begin exploring the very early universe with JWST. As such, we find high-redshift galaxies by examining the spectral energy distribution of all F444W detections and present 16 new z > 8.5 galaxies identified using two different photometric redshift codes: LePhare and EAZY combined with other significance criteria. The highest-redshift object in our sample is at z = 15.6 − 0.3 + 0.4 , which has a blue β = − 3.02 − 0.46 + 0.42 and a very low inferred stellar mass of M * = 107.4 M . We also discover a series of faint, low-mass dwarf galaxies with M * < 108.5 M at z ∼ 9 that have blue colors, flat surface brightness profiles, and small sizes <1 kpc. Comparing to previous work in the HUDF-Par2, we find 21 6 < z < 9 candidates including two z = 8 major mergers. One of these merger candidates has an additional two z = 8 sources within 30″, indicating that it may form part of an overdensity. We also compare our results to theory, finding no significant disagreement with a few cold-dark-matter-based models. The discovery of these objects demonstrates the critical need for deeper, or similar depth but wider-area, JWST surveys to explore the early universe.