Published in

American Geophysical Union, Geophysical Research Letters, 6(51), 2024

DOI: 10.1029/2023gl106908

Links

Tools

Export citation

Search in Google Scholar

Thermoelastic Properties of Fe<sup>3+</sup>‐Rich Jeffbenite and Application to Superdeep Diamond Barometry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractJeffbenite (Mg3Al2Si3O12) is a tetragonal phase found in so far only in superdeep diamonds, and its thermoelastic parameters are a prerequisite for determining entrapment pressures as it is regarded as a potential indicator for superdeep diamonds. In this study, the thermoelastic properties of synthetic Fe3+‐jeffbenite were measured up to 33.7 GPa and 750 K. High‐temperature static compression data were fitted, giving (∂KT0/∂T)P = −0.0107 (4) GPa/K and αT = 3.50 (3) × 10−5 K−1. The thermoelastic properties and phase stability are applied to modeling isomekes, or P‐T paths intersecting possible conditions of entrapment in diamond. We calculate that under ideal exhumation, jeffbenite entrapped at mantle transition zone conditions will exhibit a high remnant pressure at 300 K (Pinc) of ∼5.0 GPa. Elastic geobarometry on future finds of jeffbenite inclusions can use the new equation of state to estimate entrapment pressures for this phase with still highly uncertain stability field in the mantle.