Published in

arXiv, 2022

DOI: 10.48550/arxiv.2212.03554

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-42357-5

Links

Tools

Export citation

Search in Google Scholar

Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Light-matter interaction enables engineering of non-equilibrium quantum systems. In condensed matter, spatially and temporally cyclic Hamiltonians are expected to generate energy-periodic Floquet states, with properties inaccessible at thermal equilibrium. A recent work explored the tunnelling conductance of a planar Josephson junction under microwave irradiation, and interpreted replicas of conductance features as evidence of steady Floquet-Andreev states. Here we realise a similar device in a hybrid superconducting-semiconducting heterostructure, which utilises a tunnelling probe with gate-tunable transparency and allows simultaneous measurements of Andreev spectrum and current-phase relation of the planar Josephson junction. We show that, in our devices, spectral replicas in sub-gap conductance emerging under microwave irradiation are caused by photon assisted tunnelling of electrons into Andreev states. The current-phase relation under microwave irradiation is also explained by the interaction of Andreev states with microwave photons, without the need to invoke Floquet states. The techniques outlined in this study establish a baseline to distinguish photon assisted tunnelling from Floquet-Andreev states in mesoscopic devices, a crucial development towards understanding light-matter coupling in hybrid nanostructures.