Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 13(121), 2024

DOI: 10.1073/pnas.2315584121

Links

Tools

Export citation

Search in Google Scholar

Metastable precipitation and ion–extractant transport in liquid–liquid separations of trivalent elements

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The extractant-assisted transport of metal ions from aqueous to organic environments by liquid–liquid extraction has been widely used to separate and recover critical elements on an industrial scale. While current efforts focus on designing better extractants and optimizing process conditions, the mechanism that underlies ionic transport remains poorly understood. Here, we report a nonequilibrium process in the bulk aqueous phase that influences interfacial ion transport: the formation of metastable ion–extractant precipitates away from the liquid–liquid interface, separated from it by a depletion region without precipitates. Although the precipitate is soluble in the organic phase, the depletion region separates the two and ions are sequestered in a long-lived metastable state. Since precipitation removes extractants from the aqueous phase, even extractants that are sparingly soluble in water will continue to be withdrawn from the organic phase to feed the aqueous precipitation process. Solute concentrations in both phases and the aqueous pH influence the temporal evolution of the process and ionic partitioning between the precipitate and organic phase. Aqueous ion–extractant precipitation during liquid–liquid extraction provides a reaction path that can influence the extraction kinetics, which plays an important role in designing advanced processes to separate rare earths and other minerals.